目录
3.部件介绍
3.1存储器
3.264-位光刻ROM
3.3外部电源的连接
3.4配置寄存器
3.5温度的读取
4.工作原理 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。
DS18B20
1.主要特性
(1)适应电压范围3.0V~5.5V,在寄生电源方式下可由数据线供电。
(2)DS18B20与微处理器之间仅需要—条口线即可双向通讯。
(3)支持多点组网功能,多个DS18B20可以并联在唯—的三线上,实现组网多点测温。
(4)不需要任何外围元件,全部传感元件及转换电路集成在外形如一只三极管的电路内。
(5)测温范围-55℃~+125℃,在-lO℃~+85℃时精度为±0.5℃。
(6)可编程的分辨率为9位~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。
(7)在9位分辨率时,最多93.75ms便可把温度转换为数字,12位分辨率时最多750ms便可把温度值转换为数字。
(8)直接输出数字温度信号,以一线总线串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。
(9)电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。
(10)3DS18B20遵循单总线协议,每次测温时必须有初始化、传送ROM命令、传送RAM命令、数据交换等4个过程。
2.内外结构
DS18B20的外部结构如图所示。其中,VDD为电源输入端,DQ为数字信号输入/输出端,GND为电源地。
DS18B20外部结构
DS18B20内部结构主要包括4部分:64位光刻ROM、温度传感器、非易失的温度报警触发器TH和TL、配置寄存器,如图所示。
DS18B20内部结构
64位ROM中,在产品出厂前就被厂家通过光刻刻录好了64位序列号。该序列号可以看作是DS18B20的地址序列码,用来区分每一个DS18B20,从而更好地实现对现场温度的多点测量。
3.部件介绍
3.1存储器
DS18B20的存储器包括高速暂存器RAM和可电擦除RAM,可电擦除RAM又包括温度触发器TH和TL,以及一个配置寄存器。存储器能完整的确定一线端口的通讯,数字开始用写寄存器的命令写进寄存器,接着也可以用读寄存器的命令来确认这些数字。当确认以后就可以用复制寄存器的命令来将这些数字转移到可电擦除RAM中。当修改过寄存器中的数时,这个过程能确保数字的完整性。
高速暂存器RAM是由8个字节的存储器组成;。用读寄存器的命令能读出第九个字节,这个字节是对前面的八个字节进行校验。
3.264-位光刻ROM
64位光刻ROM的前8位是DS18B20的自身代码,接下来的48位为连续的数字代码,最后的8位是对前56位的CRC校验。64-位的光刻ROM又包括5个ROM的功能命令:读ROM,匹配ROM,跳跃ROM,查找ROM和报警查找。
3.3外部电源的连接
DS18B20可以使用外部电源VDD,也可以使用内部的寄生电源。当VDD端口接3.0V—5.5V的电压时是使用外部电源;当VDD端口接地时使用了内部的寄生电源。无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。
3.4配置寄存器
配置寄存器是配置不同的位数来确定温度和数字的转化。
可以知道R1,R0是温度的决定位,由R1,R0的不同组合可以配置为9位,10位,11位,12位的温度显示。这样就可以知道不同的温度转化位所对应的转化时间,四种配置的分辨率分别为0.5℃,0.25℃,0.125℃和0.0625℃,出厂时以配置为12位。
3.5温度的读取
DS18B20在出厂时以配置为12位,读取温度时共读取16位,前5个位为符号位,当前5位为1时,读取的温度为负数;当前5位为0时,读取的温度为正数。温度为正时读取方法为:将16进制数转换成10进制即可。温度为负时读取方法为:将16进制取反后加1,再转换成10进制即可。例:0550H = +85 度,FC90H = -55 度。
4.工作原理
DS18B20测温原理图
DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。DS18B20的测温原理如图2所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。
计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃ 所对应的一个基数值。
减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。
另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同。
本文总结了DS1820的特性、结构以及工作原理。DS1820主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。